首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   261篇
  免费   7篇
  国内免费   5篇
测绘学   3篇
大气科学   13篇
地球物理   90篇
地质学   80篇
海洋学   35篇
天文学   32篇
自然地理   20篇
  2021年   2篇
  2020年   2篇
  2019年   8篇
  2018年   3篇
  2017年   5篇
  2016年   6篇
  2015年   12篇
  2014年   11篇
  2013年   18篇
  2012年   11篇
  2011年   11篇
  2010年   18篇
  2009年   21篇
  2008年   11篇
  2007年   18篇
  2006年   20篇
  2005年   8篇
  2004年   11篇
  2003年   4篇
  2002年   4篇
  2001年   5篇
  2000年   6篇
  1999年   3篇
  1998年   1篇
  1997年   4篇
  1996年   3篇
  1995年   7篇
  1994年   4篇
  1993年   4篇
  1992年   3篇
  1991年   3篇
  1990年   4篇
  1989年   2篇
  1988年   4篇
  1987年   2篇
  1985年   5篇
  1984年   2篇
  1983年   1篇
  1981年   1篇
  1980年   1篇
  1979年   1篇
  1978年   1篇
  1973年   1篇
  1970年   1篇
排序方式: 共有273条查询结果,搜索用时 15 毫秒
111.
Stand transpiration (E) estimated using the sap‐flux method includes uncertainty induced by variations in sap flux (F) within a tree (i.e. radial and azimuthal variations) and those between trees. Unlike radial variations, azimuthal variations are not particularly systematic (i.e. higher/lower F is not always recorded for a specific direction). Here, we present a theoretical framework to address the question on how to allocate a limited number of sensors to minimize uncertainty in E estimates. Specifically, we compare uncertainty in E estimates for two cases: (1) measuring F for two or more directions to cover azimuthal variations in F and (2) measuring F for one direction to cover between‐tree variations in F. The framework formulates the variation in the probability density function for E (σE) based on F recorded in m different azimuthal directions (e.g. north, east, south and west). This formula allows us to determine the m value that minimizes σE. This study applied the framework to F data recorded for a 55‐year‐old Cryptomeria japonica stand. σE for m = 1 was found to be less than the values for m = 2, 3 and 4. Our results suggest that measuring F for one azimuthal direction provides more reliable E estimates than measuring F for two or more azimuthal directions for this stand, given a limited number of sensors. Application of this framework to other datasets helps us decide how to allocate sensors most effectively. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
112.
113.
114.
We have investigated the spreading of river water in Suruga Bay by performing numerical experiments and conducting field surveys with drifting buoys. There are clear seasonal variations in the large river discharges into the bay: increased discharge in the rainy summer season and decreased discharge in the dry winter season. The numerical model reproduces the main feature that has been observed in the actual sea: the river water extends gradually from the northwestern to the southeastern regions in the bay, especially in summer. The river water spreading is greatly influenced by the bottom topography of the bay: the Fuji River water spreads over a deep continental slope as a surface-advected plume and extends well offshore, since a large bulge (anticyclonic eddy at the river mouth) extends well offshore and effectively transports the river water offshore. On the other hand, the Oi River water tends to flow parallel to isobaths (along a coastline) on a shallow continental shelf as a bottomadvected plume. Moreover, the influences of seasonal variations in the stratification and a bay-scale, wind-driven circulation are also investigated. Trajectories of the drifting buoys, which were released around the Fuji River mouth, certainly suggest that the bulge exists there.  相似文献   
115.
A redetermination of the isotopic abundances of atmospheric Ar   总被引:5,自引:0,他引:5  
Atmospheric argon measured on a dynamically operated mass spectrometer with an ion source magnet, indicated systematically larger 40Ar/36Ar ratios compared to the generally accepted value of Nier [Nier A.O., 1950. A redetermination of the relative abundances of the isotopes of carbon, nitrogen, oxygen, argon, and potassium. Phys. Rev. 77, 789-793], 295.5 ± 0.5, which has served as the standard for all isotopic measurements in geochemistry and cosmochemistry. Gravimetrically prepared mixtures of highly enriched 36Ar and 40Ar were utilized to redetermine the isotopic abundances of atmospheric Ar, using a dynamically operated isotope ratio mass spectrometer with minor modifications and special gas handling techniques to avoid fractionation. A new ratio 40Ar/36Ar = 298.56 ± 0.31 was obtained with a precision of 0.1%, approximately 1% higher than the previously accepted value. Combined with the 38Ar/36Ar (0.1885 ± 0.0003) measured with a VG5400 noble gas mass spectrometer in static operation, the percent abundances of 36Ar, 38Ar, and 40Ar were determined to be 0.3336 ± 0.0004, 0.0629 ± 0.0001, and 99.6035 ± 0.0004, respectively. We calculate an atomic mass of Ar of 39.9478 ± 0.0002. Accurate Ar isotopic abundances are relevant in numerous applications, as the calibration of the mass spectrometer discrimination.  相似文献   
116.
Soil moisture plays an important role in hydrology. Understanding factors (such as topography, vegetation, and meteorological conditions) that influence spatio‐temporal variability in soil moisture, and how this influence is manifested, is important for understanding hydrological processes. A number of distributed (quasi‐)physical hydrological models have been developed to investigate this subject. Previous studies have shown that the spatial differences in the distribution of soil types (residual and colluvial soils) dominantly reflect spatio‐temporal fluctuations in soil moisture and runoff. We present a methodology for assessing the spatial distribution of residual and colluvial soils, which differ with respect to their physical characteristics, in a 0·88 km2 forested catchment with complex topography and a complex land‐use history. Our method is based on penetration resistance profile data; in this data set, each data point represents soil physical characteristics within an area of about 25 m2. If the spatial distribution of soils under similar meteorological, geological, historical land use, and other conditions could be characterized on the basis of similarity in topographic features, then the spatial distribution of soil could be predicted based on relationships between various topographic indices (e.g. topographic index and local slope). We tested whether our model correctly assessed the reference data. The model's results were 90·5% correct for residual soils and 87·3% correct for colluvial soils. Further studies will quantify the relationships between topographic features of land covered by residual and colluvial soils and changes in spatio‐temporal variations in the catchment (e.g. vegetation and land use) as a function of geology or meteorology. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   
117.
118.
Eighteen papers are included in Volume 1 of a PAGEOPH topical issue Tsunamis in the World Ocean: Past, Present, and Future. These papers are briefly introduced. They are grouped into three categories: case studies of earthquake-generated tsunamis; tsunami forecast and hazard assessments; and theoretical and computational modeling of tsunami generation, propagation, and coastal behavior. Most of the papers were presented at the 24th International Tsunami Symposium held 14?C16 July 2009 in Novosibirsk, Russia, and reflect the current state of tsunami science.  相似文献   
119.
We modeled a tsunami from the West Papua, Indonesia earthquakes on January 3, 2009 (M w?=?7.7). After the first earthquake, tsunami alerts were issued in Indonesia and Japan. The tsunami was recorded at many stations located in and around the Pacific Ocean. In particular, at Kushimoto on Kii Peninsula, the maximum amplitude was 43?cm, larger than that at Manokwari on New Guinea Island, near the epicenter. The tsunami was recorded on near-shore wave gauges, offshore GPS sensors and deep-sea bottom pressure sensors. We have collected more than 150 records and used 72 stations?? data with clear tsunami signals for the tsunami source modeling. We assumed two fault models (single fault and five subfaults) which are located to cover the aftershock area. The estimated average slip on the single fault model (80?×?40?km) is 0.64?m, which yields a seismic moment of 1.02?×?1020?Nm (M w?=?7.3). The observed tsunami waveforms at most stations are well explained by this model.  相似文献   
120.
Fifteen papers are included in Volume 2 of a PAGEOPH topical issue Tsunamis in the World Ocean: Past, Present, and Future. These papers are briefly introduced. They are grouped into three categories: reports and studies of recent tsunamis, studies on tsunami statistics and application to tsunami warning, and modeling studies of tsunami runup and inundation. Most of the papers were presented at the 24th International Tsunami Symposium held 14–16 July 2009 in Novosibirsk, Russia, and reflect the current state of tsunami science.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号